organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 1-cyclopropyl-6,7-difluoro-8methoxy-4-oxo-1,4-dihydroquinoline-3carboxylate

De-Cai Wang,* Xin-Ming Huang, Yan-Ping Liu and Chun-Lei Tang

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: hxm36547870@163.com

Received 16 October 2008; accepted 23 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.061; wR factor = 0.175; data-to-parameter ratio = 12.8.

In the title compound, $C_{16}H_{15}F_2NO_4$, the dihedral angle between the three-membered ring and the quinoline ring system is 64.3 (3)°. In the crystal structure, intermolecular C– $H \cdots O$ hydrogen bonds link the molecules, forming a column running along [101].

Related literature

The title compound is a key intermediate in the synthesis of a series of fluoroquinolones, see: Matsumoto *et al.* (1996); Nagano *et al.* (1989); Petersen *et al.* (1993).

Experimental

Crystal data C₁₆H₁₅F₂NO₄

 $M_r = 323.29$

wonoenine, cz/c	$\Sigma = 0$
a = 16.395 (3) Å	Mo $K\alpha$ radiation
b = 17.732 (4) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 12.199 (2) Å	T = 293 (2) K
$\beta = 123.71 \ (3)^{\circ}$	$0.10 \times 0.10 \times 0.05 \text{ mm}$
V = 2950.1 (14) Å ³	
Data collection	
Enraf-Nonius CAD-4	2663 independent reflections
diffractometer	1580 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.068$
(North et al., 1968)	3 standard reflections
$T_{\rm min} = 0.988, \ T_{\rm max} = 0.994$	every 200 reflections
2760 measured reflections	intensity decay: none
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.061$ 208 parameters $wR(F^2) = 0.175$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.21$ e Å $^{-3}$ 2663 reflections $\Delta \rho_{min} = -0.19$ e Å $^{-3}$

7 0

Table 1

Monoclinic C2/c

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\overline{\begin{array}{c} C1 - H1A \cdots O2^{i} \\ C12 - H12B \cdots O2^{ii} \end{array}}$	0.96	2.58	3.220 (8)	124
	0.97	2.50	3.273 (5)	136

Symmetry codes: (i) $-x, y, -z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *PLATON* (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2351).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Matsumoto, T., Hara, M. & Miyashita, K. (1996). PCT Int. Appl. WO 19 951 205.

Nagano, H., Yokota, T. & Katoh, Y. (1989). Eur. Pat. Appl. EP 89 108 963.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Petersen, U., Krebs, A. & Schenke, T. (1993). Eur. Pat. Appl. EP 92 122 058. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o2214 [doi:10.1107/S1600536808034715]

Ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate

D.-C. Wang, X.-M. Huang, Y.-P. Liu and C.-L. Tang

Comment

The title compound, 1-cyclopropyl-6,7-difluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid ethyl ester, is a key intermediate to synthesize a series of fluoroquinolones, such as moxifloxacin (Petersen *et al.*, 1993), balofloxacin (Nagano *et al.*, 1989) and gatifloxacin (Matsumoto *et al.*, 1996). As part of our studies in this area, we report here the synthesis and crystal structure of the title compound, (I) (Fig. 1).

The benzene ring and its adjacent six-membered ring were almost coplanar. The dihedral angles between the threemembered ring and the benzene ring is $65.30 (14)^{\circ}$. In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules, in which they are effective in the stabilization of the structure.

Experimental

A solution of 26 g (0.075 mol) of 3-cyclopropylamino-2- (2,4,5-trifluoro-3-methoxybenzoyl)acrylic acid ethyl ester and 110 ml of DMF was treated with 22 g (0.16 mol) of K_2CO_3 , and then heated to 50 °C with stirring for 1 h. The resulting precipitate was filtered, washed with the mixture of ice and water, and dried to give 23 g of the title compound (yield 95%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement

All H atoms were placed geometrically (C—H = 0.93–0.98 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(\text{methyl C})$.

Figures

Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate

Crystal data C₁₆H₁₅F₂NO₄

 $M_r = 323.29$

$F_{000} = 1344$
$D_{\rm x} = 1.456 {\rm Mg m}^{-3}$

Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 25 reflections
<i>a</i> = 16.395 (3) Å	$\theta = 9-12^{\circ}$
b = 17.732 (4) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 12.199 (2) Å	T = 293 (2) K
$\beta = 123.71 \ (3)^{\circ}$	Block, colorless
$V = 2950.1 (14) \text{ Å}^3$	$0.10\times0.10\times0.05~mm$
Z = 8	
Data collection	
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.068$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.2^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 293(2) K	$h = -2 \rightarrow 19$
$\omega/2\theta$ scans	$k = 0 \rightarrow 21$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -14 \rightarrow 12$
$T_{\min} = 0.988, T_{\max} = 0.994$	3 standard reflections

 $T_{\min} = 0.988, T_{\max} = 0.994$ 2760 measured reflections 2663 independent reflections 1580 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.061$	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 5P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.175$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
2663 reflections	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
208 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0026 (5)

every 200 reflections

intensity decay: none

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ν	0.1306 (2)	0.28705 (16)	-0.2762 (2)	0.0512 (7)
01	0.1226 (2)	0.17328 (16)	-0.4536 (2)	0.0752 (8)
F1	0.1209 (2)	-0.01688 (12)	-0.1874 (3)	0.1108 (10)
C1	0.0365 (4)	0.1548 (3)	-0.5789 (4)	0.1079 (18)
H1A	-0.0094	0.1957	-0.6088	0.162*
H1B	0.0072	0.1100	-0.5709	0.162*
H1C	0.0539	0.1462	-0.6412	0.162*
O2	0.1328 (2)	0.21459 (14)	0.0430 (2)	0.0736 (8)
F2	0.1196 (2)	0.02669 (13)	-0.3966 (3)	0.0991 (9)
C2	0.1223 (2)	0.1543 (2)	-0.3446 (3)	0.0550 (9)
O3	0.1010 (3)	0.44539 (16)	-0.0591 (3)	0.0988 (11)
C3	0.1211 (3)	0.0799 (2)	-0.3166 (4)	0.0664 (10)
O4	0.11605 (19)	0.36229 (14)	0.0869 (2)	0.0666 (7)
C4	0.1229 (3)	0.0575 (2)	-0.2074 (4)	0.0689 (10)
C5	0.1266 (3)	0.1091 (2)	-0.1231 (4)	0.0604 (9)
H5A	0.1274	0.0935	-0.0497	0.073*
C6	0.1292 (2)	0.18552 (18)	-0.1466 (3)	0.0462 (8)
C7	0.1284 (2)	0.20942 (18)	-0.2564 (3)	0.0447 (8)
C8	0.1282 (2)	0.23918 (19)	-0.0548 (3)	0.0466 (8)
C9	0.1211 (2)	0.31671 (18)	-0.0906 (3)	0.0450 (8)
C10	0.1234 (2)	0.33541 (19)	-0.1976 (3)	0.0520 (8)
H10A	0.1196	0.3864	-0.2176	0.062*
C11	0.1438 (3)	0.3184 (2)	-0.3768 (3)	0.0650 (11)
H11A	0.0854	0.3183	-0.4672	0.078*
C12	0.2375 (3)	0.3084 (2)	-0.3630 (4)	0.0737 (11)
H12A	0.2362	0.3011	-0.4428	0.088*
H12B	0.2885	0.2807	-0.2869	0.088*
C13	0.2109 (3)	0.3841 (2)	-0.3402 (4)	0.0821 (13)
H13A	0.1928	0.4227	-0.4063	0.098*
H13B	0.2452	0.4024	-0.2502	0.098*
C14	0.1107 (3)	0.3813 (2)	-0.0227 (3)	0.0551 (9)
C15	0.1052 (3)	0.4226 (2)	0.1578 (4)	0.0711 (11)
H15A	0.0395	0.4435	0.1050	0.085*
H15B	0.1517	0.4626	0.1770	0.085*
C16	0.1232 (4)	0.3914 (3)	0.2797 (4)	0.0988 (16)
H16A	0.1172	0.4306	0.3291	0.148*
H16B	0.1882	0.3706	0.3308	0.148*
H16C	0.0762	0.3524	0.2595	0.148*
Atomia dianlass	mont navar store 182	2)		
люти аврисен	nem purumeters (A	/		
	U^{11} U	U^{22} U^{33}	U^{12}	U^{13}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2

 U^{23}

supplementary materials

Ν	0.0654 (18)	0.0554 (18)	0.0445 (15)	0.0109 (13)	0.0378 (14)	0.0036 (13)
01	0.097 (2)	0.087 (2)	0.0541 (15)	-0.0087 (15)	0.0494 (15)	-0.0196 (13)
F1	0.182 (3)	0.0485 (14)	0.160 (3)	-0.0203 (15)	0.131 (2)	-0.0184 (15)
C1	0.110 (4)	0.158 (5)	0.060 (3)	0.008 (3)	0.049 (3)	-0.025 (3)
O2	0.122 (2)	0.0632 (16)	0.0624 (16)	-0.0063 (15)	0.0677 (17)	-0.0018 (13)
F2	0.144 (2)	0.0714 (16)	0.119 (2)	-0.0169 (15)	0.0963 (19)	-0.0394 (14)
C2	0.051 (2)	0.070 (3)	0.0504 (19)	0.0013 (17)	0.0323 (16)	-0.0102 (17)
O3	0.189 (3)	0.0569 (18)	0.101 (2)	0.0292 (19)	0.112 (2)	0.0115 (16)
C3	0.076 (3)	0.061 (2)	0.075 (2)	-0.0102 (19)	0.050 (2)	-0.029 (2)
O4	0.105 (2)	0.0581 (15)	0.0640 (15)	0.0071 (13)	0.0637 (15)	-0.0046 (12)
C4	0.083 (3)	0.048 (2)	0.097 (3)	-0.0039 (19)	0.063 (2)	-0.003 (2)
C5	0.072 (2)	0.054 (2)	0.073 (2)	-0.0034 (18)	0.052 (2)	-0.0022 (19)
C6	0.0426 (17)	0.053 (2)	0.0471 (17)	-0.0039 (15)	0.0275 (15)	-0.0054 (15)
C7	0.0370 (16)	0.055 (2)	0.0448 (17)	0.0004 (14)	0.0242 (14)	-0.0072 (14)
C8	0.0433 (17)	0.059 (2)	0.0429 (17)	-0.0052 (15)	0.0273 (14)	-0.0085 (15)
C9	0.0409 (17)	0.058 (2)	0.0382 (15)	0.0037 (14)	0.0234 (13)	-0.0034 (15)
C10	0.063 (2)	0.052 (2)	0.0487 (18)	0.0101 (16)	0.0359 (17)	-0.0017 (16)
C11	0.100 (3)	0.066 (2)	0.0420 (18)	0.020 (2)	0.047 (2)	0.0113 (17)
C12	0.106 (3)	0.072 (3)	0.079 (3)	0.010 (2)	0.074 (3)	0.006 (2)
C13	0.143 (4)	0.060 (3)	0.084 (3)	0.005 (3)	0.089 (3)	0.009 (2)
C14	0.072 (2)	0.057 (2)	0.0516 (19)	0.0087 (18)	0.0432 (18)	0.0020 (17)
C15	0.107 (3)	0.064 (2)	0.071 (2)	0.012 (2)	0.068 (2)	-0.0086 (19)
C16	0.145 (4)	0.099 (4)	0.092 (3)	0.014 (3)	0.091 (3)	-0.011 (3)

Geometric parameters (Å, °)

N—C10	1.340 (4)	C6—C7	1.398 (4)
N—C7	1.402 (4)	C6—C8	1.477 (4)
N—C11	1.468 (4)	C8—C9	1.428 (4)
O1—C2	1.373 (4)	C9—C10	1.367 (4)
O1—C1	1.429 (5)	C9—C14	1.479 (4)
F1—C4	1.345 (4)	C10—H10A	0.9300
C1—H1A	0.9600	C11—C12	1.462 (5)
C1—H1B	0.9600	C11—C13	1.491 (6)
C1—H1C	0.9600	C11—H11A	0.9800
O2—C8	1.233 (4)	C12—C13	1.485 (5)
F2—C3	1.348 (4)	C12—H12A	0.9700
C2—C3	1.365 (5)	C12—H12B	0.9700
C2—C7	1.416 (4)	С13—Н13А	0.9700
O3—C14	1.198 (4)	С13—Н13В	0.9700
C3—C4	1.374 (5)	C15—C16	1.455 (5)
O4—C14	1.333 (4)	С15—Н15А	0.9700
O4—C15	1.448 (4)	С15—Н15В	0.9700
C4—C5	1.353 (5)	C16—H16A	0.9600
C5—C6	1.391 (5)	C16—H16B	0.9600
С5—Н5А	0.9300	С16—Н16С	0.9600
C10—N—C7	119.0 (3)	N	117.0
C10—N—C11	117.9 (3)	C9—C10—H10A	117.0
C7—N—C11	123.1 (3)	C12—C11—N	119.4 (3)

C2	116.6 (3)	C12—C11—C13	60.4 (3)
O1—C1—H1A	109.5	N—C11—C13	118.2 (3)
O1—C1—H1B	109.5	C12—C11—H11A	115.8
H1A—C1—H1B	109.5	N—C11—H11A	115.8
01—C1—H1C	109.5	C13—C11—H11A	115.8
H1A—C1—H1C	109.5	C11—C12—C13	60.8 (3)
H1B—C1—H1C	109.5	C11—C12—H12A	117.7
C3—C2—O1	119.2 (3)	C13—C12—H12A	117.7
C3—C2—C7	118.8 (3)	C11—C12—H12B	117.7
O1—C2—C7	122.0 (3)	C13—C12—H12B	117.7
F2—C3—C2	119.5 (3)	H12A—C12—H12B	114.8
F2—C3—C4	118.7 (4)	C12—C13—C11	58.8 (3)
C2—C3—C4	121.8 (3)	С12—С13—Н13А	117.9
C14—O4—C15	116.7 (3)	C11—C13—H13A	117.9
F1—C4—C5	121.3 (4)	С12—С13—Н13В	117.9
F1—C4—C3	118.1 (4)	С11—С13—Н13В	117.9
C5—C4—C3	120.6 (4)	H13A—C13—H13B	115.0
C4—C5—C6	119.7 (3)	O3—C14—O4	122.2 (3)
С4—С5—Н5А	120.1	O3—C14—C9	124.0 (3)
С6—С5—Н5А	120.1	O4—C14—C9	113.7 (3)
C5—C6—C7	120.5 (3)	O4—C15—C16	107.8 (3)
C5—C6—C8	117.2 (3)	O4—C15—H15A	110.1
C7—C6—C8	122.2 (3)	C16—C15—H15A	110.1
C6—C7—N	118.4 (3)	O4—C15—H15B	110.1
C6—C7—C2	118.6 (3)	C16—C15—H15B	110.1
NC7C2	123.0 (3)	H15A—C15—H15B	108.5
O2—C8—C9	126.0 (3)	C15—C16—H16A	109.5
O2—C8—C6	119.1 (3)	C15-C16-H16B	109.5
C9—C8—C6	115.0 (3)	H16A—C16—H16B	109.5
C10—C9—C8	119.0 (3)	C15—C16—H16C	109.5
C10—C9—C14	114.9 (3)	H16A—C16—H16C	109.5
C8—C9—C14	126.2 (3)	H16B—C16—H16C	109.5
NC10C9	126.0 (3)		
C1—O1—C2—C3	66.2 (5)	C5—C6—C8—O2	5.6 (4)
C1—O1—C2—C7	-117.1 (4)	C7—C6—C8—O2	-177.2 (3)
O1—C2—C3—F2	-0.4 (5)	C5—C6—C8—C9	-174.0 (3)
C7—C2—C3—F2	-177.2 (3)	C7—C6—C8—C9	3.1 (4)
O1—C2—C3—C4	178.6 (3)	O2—C8—C9—C10	175.5 (3)
C7—C2—C3—C4	1.8 (6)	C6—C8—C9—C10	-4.9 (4)
F2—C3—C4—F1	-1.4 (6)	O2—C8—C9—C14	-4.8 (5)
C2—C3—C4—F1	179.6 (3)	C6—C8—C9—C14	174.8 (3)
F2—C3—C4—C5	178.6 (3)	C7—N—C10—C9	5.2 (5)
C2—C3—C4—C5	-0.5 (6)	C11—N—C10—C9	-172.8 (3)
F1—C4—C5—C6	179.6 (3)	C8—C9—C10—N	0.9 (5)
C3—C4—C5—C6	-0.4 (6)	C14—C9—C10—N	-178.8 (3)
C4—C5—C6—C7	-0.2 (5)	C10—N—C11—C12	110.6 (4)
C4—C5—C6—C8	177.0 (3)	C7—N—C11—C12	-67.3 (5)
C5—C6—C7—N	179.6 (3)	C10—N—C11—C13	40.6 (5)
C8—C6—C7—N	2.6 (4)	C7—N—C11—C13	-137.3 (3)

supplementary materials

C5—C6—C7—C2	1.6 (4)	N-C11-C12-C13	-107.7 (4)
C8—C6—C7—C2	-175.5 (3)	N-C11-C13-C12	109.6 (4)
C10—N—C7—C6	-6.7 (4)	C15—O4—C14—O3	2.7 (5)
C11—N—C7—C6	171.2 (3)	C15—O4—C14—C9	-179.2 (3)
C10—N—C7—C2	171.3 (3)	C10-C9-C14-O3	2.8 (5)
C11—N—C7—C2	-10.8 (5)	C8—C9—C14—O3	-176.9 (4)
C3—C2—C7—C6	-2.3 (5)	C10-C9-C14-O4	-175.2 (3)
O1—C2—C7—C6	-179.0 (3)	C8—C9—C14—O4	5.1 (5)
C3—C2—C7—N	179.7 (3)	C14—O4—C15—C16	-174.3 (3)
O1—C2—C7—N	3.0 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$	
C1—H1A···O2 ⁱ	0.96	2.58	3.220 (8)	124	
C12—H12B···O2 ⁱⁱ	0.97	2.50	3.273 (5)	136	
Symmetry codes: (i) $-x$, y , $-z-1/2$; (ii) $-x+1/2$, $-y+1/2$, $-z$.					

